Approximate inverse preconditioners with adaptive dropping

نویسندگان

  • Jirí Kopal
  • Miroslav Rozlozník
  • Miroslav Tuma
چکیده

It is well-known that analysis of incomplete Cholesky and LU decompositions with a general dropping is very difficult and of limited applicability, see, for example, the results on modified decompositions [1], [2], [3] and later results based on similar concepts. This is true not only for the dropping based on magnitude of entries but it also applies to algorithms that use a prescribed sparsity pattern. This paper deals with dropping strategies for a class of AINV-type incomplete decompositions [4] that are based on the generalized Gram–Schmidt process. Its behavior in finite precision arithmetic has been discussed in [5]. This analysis enables better understanding of the incomplete process, and the main goal of the paper is to propose a new adaptive dropping strategy and to illustrate its efficiency for problems in structural mechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms

In this paper‎, ‎an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms‎. ‎We use different drop tolerance parameters to compute the preconditioners‎. ‎To study the effect of such a dropping on the quality of the ILU ...

متن کامل

Approximate Inverse Preconditioners for General Sparse Matrices

The standard Incomplete LU (ILU) preconditioners often fail for general sparse indeenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI?AMk F , where AM is the preconditioned matrix. An iterative descent-type method...

متن کامل

Approximate Inverse Preconditioners via Sparse-Sparse Iterations

The standard incomplete LU (ILU) preconditioners often fail for general sparse in-deenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI ? AMk F , where AM is the preconditioned matrix. An iterative descent-type met...

متن کامل

Multigrid Treatment and Robustness Enhancement for Factored Sparse Approximate Inverse Preconditioning

We investigate the use of sparse approximate inverse techniques (SAI) in a grid based multilevel ILU preconditioner (GILUM) to design a robust parallelizable precon-ditioner for solving general sparse matrix. Taking the advantages of grid based mul-tilevel methods, the resulting preconditioner outperforms sparse approximate inverse in robustness and eeciency. Conversely, taking the advantages o...

متن کامل

Different Versions of ILU and IUL Factorizations Obtained from Forward and Backward Factored Approximate Inverse Processes - Part I

We present an incomplete UL IUL decomposition of matrixAwhich is extracted as a by-product of BFAPINV backward factored approximate inverse process. We term this IUL factorization as IULBF. We have used ILUFF 3 and IULBF as left preconditioner for linear systems. Different versions of ILUFF and IULBF preconditioners are computed by using different dropping techniques. In this paper, we compare ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in Engineering Software

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015